
1 The Division Algorithm

Theorem 1.1. For integers a, b, and c, if a | b and a | c, then a | b + c.

Theorem 1.2. For integers a, b, and c, if a | b and a | c, then a | b− c.

Theorem 1.3. For integers a, b, and c, if a | b and a | c, then a | bc.

Theorem 1.4. For integers a, b, and c, if a | b and b | c, then a | c.

Theorem 1.5. For a natural number n, congruence modulo n is reflexive, symmetric, and transitive

Theorem 1.6. For integer a, b, c, d and a natural number n, if a ≡ b mod n and c ≡ d mod n, then
a + c ≡ b + d mod n.

Theorem 1.7. For integer a,b,c,d and a natural number n, if a ≡ b mod n and c ≡ d mod n, then
a− c ≡ b− d mod n.

Theorem 1.8. For integer a, b and natural numbers n,m if a ≡ b mod n and then ma ≡ mb mod mn.

Theorem 1.9. For integer a, b, c, d and a natural number n, if a ≡ b mod n and c ≡ d mod n, then
ac ≡ bd mod n.

Theorem 1.10. For integer a, b and a natural number n, a ≡ b mod n if and only if a and b have the
same remainder when divided by n.

Theorem 1.11. For integers a, b, n, r and k, if a ≡ nb + r, k | a and k | b, then k | r.

Theorem 1.12. For integers a, b, n and r, if a = nb + r then gcd(a, b) = gcd(b, r).

Theorem 1.13. For integers a, b and d, the diophantine equation ax+ by = d has a solution (with x and
y integers) if and only if gcd(a, b) | d.

Corollary For integers a and b, the diophantine equation ax + by = 1 has a solution (with x and y
integers) if and only if gcd(a, b) = 1.

Theorem 1.14. For integers a and b, if x′ and y′ are integral solutions to the diophantine equation
ax + by = d, then all solutions are given by

x = x′ +
b

gcd(a, b)
t y = y′ − a

gcd(a, b)
t

where t is an integer.

Theorem 1.15. For integers a, b, c and a natural number n, if ac ≡ bc mod n and gcd(c, n) = 1, then
a ≡ b mod n.

2 Theorems About Primes

Theorem 2.1. A natural number n is prime if and only if for all p <
√
n, p does not divide n.

Fundamental Theorem of Arithmetic Every natural number greater than 1 is either a prime number
or it can be expressed uniquely as a product of primes.

Theorem 2.2. For natural numbers a and b, if a2 | b2 then a | b.

Theorem 2.3. For natural numbers a, b and n, if a | n, b | n and gcd(a, b) = 1 then ab | n.

Theorem 2.4. For p pries and integers a and b, if p | ab then p | a or p | b.

Lemma For any n ∈ N, gcd(n, n + 1) = 1.

Theorem 2.5. There are infinitely many primes.
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3 Theorems About Modularity

Theorem 3.1. For a polynomial f(x) = akx
k+ak−1x

k−1+...+a1x+a0, if a ≡ b mod n then f(a) ≡ f(b)
mod n.

Theorem 3.2. For an integer a and natural number n, there is a unique integer t in {0, 1, ..., n− 1}such
that a ≡ t mod n.

Theorem 3.3. For integers a, b, n with n > 0, ax ≡ b mod n has a solution if and only if there exist
integers x and y such that ax + ny = b.

Theorem 3.4. For integers a, b, n with n > 0, ax ≡ b mod n has a solution if and only if gcd(a, n) | b.

Theorem 3.5. For integers a, b, n with n > 0, if x′ is a solution to ax ≡ b mod n, then all solutions are
given by

x′ +
n

gcd(a, n)
m mod n

where m = 0, 1, ..., gcd(a, n)− 1.

Chinese Remainder Theorem Let n1, n2, ..., nr be positive integers such that (ni, nj) = 1 for i 6= j.
Then the system of congruences

x ≡ a1 mod n1

x ≡ a2 mod n2

...

x ≡ ar mod nr

has a simultaneous solution, which is unique modulo the integer N = n1 · n2 · ... · nr.

4 Higher Degree Congruences

Theorem 4.1. For natural numbers a and n there exists natural numbers i and j with i 6= j such that
ai ≡ aj mod n.

Theorem 4.2. For natural numbers a and n if gcd(a, n) = 1 then there exists a natural number k such
that ak ≡ 1 mod n.

Theorem 4.3. For natural numbers a and n, with gcd(a, n) = 1 and ordn(a) = k, then am ≡ 1 mod n
if and only if k | m.

Theorem 4.4. For a prime p and natural number m, Φ(pm) = pm − pm−1.

Fermat’s Little Theorem For p prime, and gcd(a, p) = 1, ap−1 ≡ 1 mod p.

Euler’s Theorem For integers a and n, with n > 0 and gcd(a, n) = 1, aΦ(n) ≡ 1 mod n.

Wilson’s Theorem For a natural number n, (n− 1)! ≡ −1 mod n if and only if n is prime.
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5 Cryptography

Theorem 5.1. If p and q are primes and W is a natural number less than p, q then W (p−1)(q−1) ≡ 1
mod pq.

Theorem 5.2. If p and q are primes and W is a natural number less than p, q then W 1+(p−1)(q−1) ≡W
mod pq.

Theorem 5.3. If p and q are primes and E is a natural number relatively prime to (p− 1)(q − 1), then
there exist natural numbers D and y such that ED = 1 + y(p− 1)(q − 1).

Theorem 5.4. If p and q are primes and W is a natural number less than p, q and ED = 1+y(p−1)(q−1)
then WED ≡W mod pq.

6 Primitive roots and high order congruences

Theorem 6.1. Suppose p is prime, ordp(a) = d and gcd(i, d) = 1, then ordp(a
i) = d.

Lagrange’s Theorem If p is prime and f(x) is a degree n polynomial then f(x) ≡ 1 mod p has at most
n incongruent solutions modulo p.

Theorem 6.2. For a prime p and a natural number n, there are at most Φ(d) many incongruent integers
modulo p that have order d modulo p.

Theorem 6.3. For a prime p and a primitive root g, the set {0, g, ..., gp−1} is a complete residue system
modulo p.

Theorem 6.4. For any natural number n,
∑

Φ(d) = n where the sum is take over the divisors d of n.

Theorem 6.5. Every prime p has a primitive root.

Theorem 6.6. For natural numbers k, b and an integer n, with gcd(k,Φ(n)) = 1 and gcd(b, n) = 1, then
the congruence

xk ≡ b mod n

has a unique solution modulo n given by

x ≡ bu mod n

where u is a solution to the diophantine equation ku + Φ(n)v = 1.
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