1 The Division Algorithm

Theorem 1.1. For integers a,b, and ¢, ifa | b and a | ¢, then a | b+ c.

Theorem 1.2. For integers a,b, and c, if a | b and a | ¢, then a | b— c.

Theorem 1.3. For integers a,b, and c, if a | b and a | ¢, then a | be.

Theorem 1.4. For integers a,b, and ¢, if a | b and b | ¢, then a | c.

Theorem 1.5. For a natural number n, congruence modulo n is reflexive, symmetric, and transitive

Theorem 1.6. For integer a,b,c,d and a natural number n, if a = b mod n and ¢ = d mod n, then
a+c=b+d modn.

Theorem 1.7. For integer a,b,c,d and a natural number n, if a = b mod n and ¢ = d mod n, then
a—c=b—d mod n.

Theorem 1.8. For integer a,b and natural numbers n,m if a = b mod n and then ma = mb mod mn.

Theorem 1.9. For integer a,b,c,d and a natural number n, if a = b mod n and ¢ = d mod n, then
ac = bd mod n.

Theorem 1.10. For integer a,b and a natural number n, a = b mod n if and only if a and b have the
same remainder when divided by n.

Theorem 1.11. For integers a,b,n,r and k, ifa=nb+7r, k|a and k| b, then k | r.
Theorem 1.12. For integers a,b,n and r, if a = nb+ r then ged(a,b) = ged(b, 7).

Theorem 1.13. For integers a,b and d, the diophantine equation ax + by = d has a solution (with x and
y integers) if and only if ged(a,b) | d.

Corollary For integers a and b, the diophantine equation ax + by = 1 has a solution (with = and y
integers) if and only if ged(a,b) = 1.

Theorem 1.14. For integers a and b, if ' and y' are integral solutions to the diophantine equation
ax + by = d, then all solutions are given by
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where t is an integer.

Theorem 1.15. For integers a,b,c and a natural number n, if ac = bc mod n and ged(c,n) = 1, then
a=b mod n.

2 Theorems About Primes

Theorem 2.1. A natural number n is prime if and only if for all p < \/n, p does not divide n.

Fundamental Theorem of Arithmetic Fvery natural number greater than 1 is either a prime number
or it can be expressed uniquely as a product of primes.

Theorem 2.2. For natural numbers a and b, if a® | b* then a | b.

Theorem 2.3. For natural numbers a,b and n, if a | n, b | n and ged(a,b) =1 then ab | n.
Theorem 2.4. For p pries and integers a and b, if p | ab then p | a orp | b.

Lemma For anyn € N, ged(n,n+1) = 1.

Theorem 2.5. There are infinitely many primes.



3 Theorems About Modularity

Theorem 3.1. For a polynomial f(z) = apx® +ap_12* 1 +...+a1x+ag, ifa =b mod n then f(a) = f(b)
mod n.

Theorem 3.2. For an integer a and natural number n, there is a unique integer t in {0,1,...,n — 1}such
that a =t mod n.

Theorem 3.3. For integers a,b,n with n > 0, ax = b mod n has a solution if and only if there exist
integers x and y such that ax + ny = b.
Theorem 3.4. For integers a,b,n with n > 0, ax =b mod n has a solution if and only if ged(a,n) | b.
Theorem 3.5. For integers a,b,n with n > 0, if 2’ is a solution to ax =b mod n, then all solutions are
given by
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x+gcd(a,n)m mod n

where m = 0,1, ..., ged(a,n) — 1.

Chinese Remainder Theorem Let ny,ns,...,n, be positive integers such that (n;,n;) = 1 for i # j.
Then the system of congruences

a1 mod ny

= a9 mod ng

r = a, modn,

has a simultaneous solution, which is unique modulo the integer N =nq - ng - ... - ny..

4 Higher Degree Congruences

Theorem 4.1. For natural numbers a and n there exists natural numbers i and j with i # j such that
a' =a’ mod n.

Theorem 4.2. For natural numbers a and n if gcd(a,n) = 1 then there exists a natural number k such
that a®* =1 mod n.

Theorem 4.3. For natural numbers a and n, with gcd(a,n) =1 and ord,(a) = k, then a™ =1 mod n
if and only if k | m.

m m—1

Theorem 4.4. For a prime p and natural number m, ®(p™) =p™ —p

Fermat’s Little Theorem For p prime, and ged(a,p) = 1, a?~! =1 mod p.
Euler’s Theorem For integers a and n, with n > 0 and ged(a,n) = 1, a®(n) =1 mod n.

Wilson’s Theorem For a natural number n, (n — 1)l = —1 mod n if and only if n is prime.



5 Cryptography

Theorem 5.1. If p and q are primes and W is a natural number less than p,q then W®=1@=1) = 1
mod pq.

Theorem 5.2. If p and q are primes and W is a natural number less than p,q then Wit®E-Da-1) =y
mod pq.

Theorem 5.3. If p and q are primes and E is a natural number relatively prime to (p — 1)(¢ — 1), then
there exist natural numbers D and y such that ED =1+ y(p—1)(¢ — 1).

Theorem 5.4. If p and q are primes and W is a natural number less than p,q and ED = 14+y(p—1)(qg—1)
then WEP =W mod pq.

6 Primitive roots and high order congruences
Theorem 6.1. Suppose p is prime, ordy(a) = d and ged(i,d) = 1, then ord,(a’) = d.

Lagrange’s Theorem If p is prime and f(x) is a degree n polynomial then f(z) =1 mod p has at most
n incongruent solutions modulo p.

Theorem 6.2. For a prime p and a natural number n, there are at most ®(d) many incongruent integers
modulo p that have order d modulo p.

Theorem 6.3. For a prime p and a primitive root g, the set {0, g, ...,g°~'} is a complete residue system
modulo p.

Theorem 6.4. For any natural number n, Y ®(d) = n where the sum is take over the divisors d of n.
Theorem 6.5. Fvery prime p has a primitive root.

Theorem 6.6. For natural numbers k,b and an integer n, with ged(k, ®(n)) =1 and ged(b,n) =1, then
the congruence
2*=b modn

has a unique solution modulo n given by
=0 modn

where u is a solution to the diophantine equation ku + ®(n)v = 1.



