1. (a) Let a natural number n be expressed in base 10 as

$$n = a_k a_{k-1} \cdots a_1 a_0.$$

(Note that what we mean by this notation is that each a_i is a diigit of a regular base 10 number, not that the a_i are being multiplied together.) If $m = a_k + a_{k-1} + \ldots + a_1 + a_0$ then $n \equiv m \mod 3$.

- (b) Using what you showed in (a), prove that a natural number that is expressed in base 10 is divisible by 3 if and only if the sum of its digits is divisible by 3.
- 2. Suppose that the sequence $\{a_n\}$ of numbers defined by $a_1 = 1, a_2 = 2, a_3 = 3$ and

$$a_n = a_{n-1} + a_{n-2} + a_{n-3}$$

for all $n \ge 4$. Show that $a_n < 2^n$.

- 3. Use the Division Algorithm to establish the following:
 - (a) The square of any integer is either of the form 3k or 3k + 1.
 - (b) The fourth power of any integer is either of the form 5k or 5k + 1.
 - (c) $3a^2 1$ is never a perfect square for any integer *a*.
- 4. (a) Prove that the product of any three consecutive integers is divisible by 6.
 (b) Prove that the expression (3n)!/(3!)ⁿ is always an integer for every n ≥ 1.