Math 311 - Homework 1

1. (a) Let a natural number n be expressed in base 10 as

$$
n=a_{k} a_{k-1} \cdots a_{1} a_{0} .
$$

(Note that what we mean by this notation is that each a_{i} is a diigit of a regular base 10 number, not that the a_{i} are being multiplied together.) If $m=a_{k}+a_{k-1}+\ldots+a_{1}+a_{0}$ then $n \equiv m \bmod 3$.
(b) Using what you showed in (a), prove that a natural number that is expressed in base 10 is divisible by 3 if and only if the sum of its digits is divisible by 3 .
2. Suppose that the sequence $\left\{a_{n}\right\}$ of numbers defined by $a_{1}=1, a_{2}=2, a_{3}=3$ and

$$
a_{n}=a_{n-1}+a_{n-2}+a_{n-3}
$$

for all $n \geq 4$. Show that $a_{n}<2^{n}$.
3. Use the Division Algorithm to establish the following:
(a) The square of any integer is either of the form $3 k$ or $3 k+1$.
(b) The fourth power of any integer is either of the form $5 k$ or $5 k+1$.
(c) $3 a^{2}-1$ is never a perfect square for any integer a.
4. (a) Prove that the product of any three consecutive integers is divisible by 6 .
(b) Prove that the expression $(3 n)!/(3!)^{n}$ is always an integer for every $n \geq 1$.

