Homework \#2

1. Confirm the following properties of the greatest common divisor:
(a) If $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, c)=1$, then $\operatorname{gcd}(a, b c)=1$. (Hint: use the hypothesis to show that 1 can be written as $a k+(b c) m$ for some integers k and m.)
(b) If $\operatorname{gcd}(a, b)=1$ and $c \mid(a+b)$ then $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$.
2. For integers a and b suppose that x^{\prime} and y^{\prime} are solutions to the diophantine equation

$$
a x+b y=d
$$

(a) Show that

$$
x=x^{\prime}+\frac{b}{\operatorname{gcd}(a, b)} t \text { and } y=y^{\prime}-\frac{a}{\operatorname{gcd}(a, b)} t
$$

is also a solution for any $t \in \mathbb{Z}$.
(b) Suppose that x_{0} and y_{0} are also solutions to the diophantine equation $a x+b y=d$. Show that x_{0} and y_{0} have the form give in part (a). (Hint: first, notice that we can always write $x_{0}=x^{\prime}+k$ and $y_{0}=y^{\prime}+m$ for integers k and m. That's just basic arithmetic. Now show that

$$
k=\frac{b}{\operatorname{gcd}(a, b)} t \text { and } m=-\frac{a}{\operatorname{gcd}(a, b)} t
$$

for some integer t)
3. For the Diophantine equation $123 x+360 y=99$ determine
(a) all its solutions;
(b) all is solutions in positive integers.
4. (a) For $n>2$, show that every prime divisor of n ! -1 is greater than n.
(b) Prove that if $n>2$, then there exists a prime p satisfying $n<p<n$!.

