1 The Division Algorithm

Theorem 1.1. For integers a, b, and c, if $a \mid b$ and $a \mid c$, then $a \mid b+c$.
Theorem 1.2. For integers a, b, and c, if $a \mid b$ and $a \mid c$, then $a \mid b-c$.
Theorem 1.3. For integers a, b, and c, if $a \mid b$ and $a \mid c$, then $a \mid b c$.
Theorem 1.4. For integers a, b, and c, if $a \mid b$ and $b \mid c$, then $a \mid c$.
Theorem 1.5. For a natural number n, congruence modulo n is reflexive, symmetric, and transitive
Theorem 1.6. For integer a, b, c, d and a natural number n, if $a \equiv b \bmod n a n d c \equiv d \bmod n$, then $a+c \equiv b+d \bmod n$.

Theorem 1.7. For integer a, b, c, d and a natural number n, if $a \equiv b \bmod n a n d c \equiv d \bmod n$, then $a-c \equiv b-d \bmod n$.

Theorem 1.8. For integer a, b and natural numbers n, m if $a \equiv b \bmod n$ and then $m a \equiv m b \bmod m n$.
Theorem 1.9. For integer a, b, c, d and a natural number n, if $a \equiv b \bmod n a n d c \equiv d \bmod n$, then $a c \equiv b d \bmod n$.

Theorem 1.10. For integer a, b and a natural number $n, a \equiv b \bmod n$ if and only if a and b have the same remainder when divided by n.

Theorem 1.11. For integers a, b, n, r and k, if $a \equiv n b+r, k \mid a$ and $k \mid b$, then $k \mid r$.
Theorem 1.12. For integers a, b, n and r, if $a=n b+r$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
Theorem 1.13. For integers a, b and d, the diophantine equation $a x+b y=d$ has a solution (with x and y integers) if and only if $\operatorname{gcd}(a, b) \mid d$.

Corollary For integers a and b, the diophantine equation $a x+b y=1$ has a solution (with x and y integers) if and only if $\operatorname{gcd}(a, b)=1$.

Theorem 1.14. For integers a and b, if x^{\prime} and y^{\prime} are integral solutions to the diophantine equation $a x+b y=d$, then all solutions are given by

$$
x=x^{\prime}+\frac{b}{\operatorname{gcd}(a, b)} t \quad y=y^{\prime}-\frac{a}{\operatorname{gcd}(a, b)} t
$$

where t is an integer.
Theorem 1.15. For integers a, b, c and a natural number n, if $a c \equiv b c \bmod n$ and $\operatorname{gcd}(c, n)=1$, then $a \equiv b \bmod n$.

2 Theorems About Primes

Theorem 2.1. A natural number n is prime if and only if for all $p<\sqrt{n}$, p does not divide n.
Fundamental Theorem of Arithmetic Every natural number greater than 1 is either a prime number or it can be expressed uniquely as a product of primes.
Theorem 2.2. For natural numbers a and b, if $a^{2} \mid b^{2}$ then $a \mid b$.
Theorem 2.3. For natural numbers a, b and n, if $a|n, b| n$ and $\operatorname{gcd}(a, b)=1$ then $a b \mid n$.
Theorem 2.4. For p pries and integers a and b, if $p \mid a b$ then $p \mid a$ or $p \mid b$.
Lemma For any $n \in \mathbb{N}, \operatorname{gcd}(n, n+1)=1$.
Theorem 2.5. There are infinitely many primes.

3 Theorems About Modularity

Theorem 3.1. For a polynomial $f(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\ldots+a_{1} x+a_{0}$, if $a \equiv b \bmod n$ then $f(a) \equiv f(b)$ $\bmod n$.

Theorem 3.2. For an integer a and natural number n, there is a unique integer t in $\{0,1, \ldots, n-1\}$ such that $a \equiv t \bmod n$.

Theorem 3.3. For integers a, b, n with $n>0, a x \equiv b \bmod n$ has a solution if and only if there exist integers x and y such that $a x+n y=b$.

Theorem 3.4. For integers a, b, n with $n>0, a x \equiv b \bmod n$ has a solution if and only if $\operatorname{gcd}(a, n) \mid b$.
Theorem 3.5. For integers a, b, n with $n>0$, if x^{\prime} is a solution to $a x \equiv b \bmod n$, then all solutions are given by

$$
x^{\prime}+\frac{n}{\operatorname{gcd}(a, n)} m \quad \bmod n
$$

where $m=0,1, \ldots, \operatorname{gcd}(a, n)-1$.
Chinese Remainder Theorem Let $n_{1}, n_{2}, \ldots, n_{r}$ be positive integers such that $\left(n_{i}, n_{j}\right)=1$ for $i \neq j$. Then the system of congruences

$$
\begin{array}{rlll}
x & \equiv a_{1} & \bmod n_{1} \\
x & \equiv a_{2} & \bmod n_{2} \\
& \vdots & \\
x & \equiv a_{r} & \bmod n_{r}
\end{array}
$$

has a simultaneous solution, which is unique modulo the integer $N=n_{1} \cdot n_{2} \cdot \ldots \cdot n_{r}$.

4 Higher Degree Congruences

Theorem 4.1. For natural numbers a and n there exists natural numbers i and j with $i \neq j$ such that $a^{i} \equiv a^{j} \bmod n$.

Theorem 4.2. For natural numbers a and n if $\operatorname{gcd}(a, n)=1$ then there exists a natural number k such that $a^{k} \equiv 1 \bmod n$.

Theorem 4.3. For natural numbers a and n, with $\operatorname{gcd}(a, n)=1$ and $\operatorname{ord}_{n}(a)=k$, then $a^{m} \equiv 1 \bmod n$ if and only if $k \mid m$.

Theorem 4.4. For a prime p and natural number $m, \Phi\left(p^{m}\right)=p^{m}-p^{m-1}$.
Fermat's Little Theorem For p prime, and $\operatorname{gcd}(a, p)=1, a^{p-1} \equiv 1 \bmod p$.
Euler's Theorem For integers a and n, with $n>0$ and $\operatorname{gcd}(a, n)=1, a^{\Phi}(n) \equiv 1 \bmod n$.
Wilson's Theorem For a natural number $n,(n-1)!\equiv-1 \bmod n$ if and only if n is prime.

5 Cryptography

Theorem 5.1. If p and q are primes and W is a natural number less than p, q then $W^{(p-1)(q-1)} \equiv 1$ $\bmod p q$.

Theorem 5.2. If p and q are primes and W is a natural number less than p, q then $W^{1+(p-1)(q-1)} \equiv W$ $\bmod p q$.

Theorem 5.3. If p and q are primes and E is a natural number relatively prime to $(p-1)(q-1)$, then there exist natural numbers D and y such that $E D=1+y(p-1)(q-1)$.

Theorem 5.4. If p and q are primes and W is a natural number less than p, q and $E D=1+y(p-1)(q-1)$ then $W^{E D} \equiv W \bmod p q$.

6 Primitive roots and high order congruences

Theorem 6.1. Suppose p is prime, ord $_{p}(a)=d$ and $\operatorname{gcd}(i, d)=1$, then ord $_{p}\left(a^{i}\right)=d$.
Lagrange's Theorem If p is prime and $f(x)$ is a degree n polynomial then $f(x) \equiv 1$ mod p has at most n incongruent solutions modulo p.

Theorem 6.2. For a prime p and a natural number n, there are at most $\Phi(d)$ many incongruent integers modulo p that have order d modulo p.

Theorem 6.3. For a prime p and a primitive root g, the set $\left\{0, g, \ldots, g^{p-1}\right\}$ is a complete residue system modulo p.

Theorem 6.4. For any natural number $n, \sum \Phi(d)=n$ where the sum is take over the divisors d of n.
Theorem 6.5. Every prime p has a primitive root.
Theorem 6.6. For natural numbers k, b and an integer n, with $\operatorname{gcd}(k, \Phi(n))=1$ and $\operatorname{gcd}(b, n)=1$, then the congruence

$$
x^{k} \equiv b \quad \bmod n
$$

has a unique solution modulo n given by

$$
x \equiv b^{u} \quad \bmod n
$$

where u is a solution to the diophantine equation $k u+\Phi(n) v=1$.

