1 The Division Algorithm

Theorem 1.1. For integers a, b, and c, if $a \mid b$ and $a \mid c$, then $a \mid b + c$.

Theorem 1.2. For integers a, b, and c, if $a \mid b$ and $a \mid c$, then $a \mid b - c$.

Theorem 1.3. For integers a, b, and c, if $a \mid b$ and $a \mid c$, then $a \mid bc$.

Theorem 1.4. For integers a, b, and c, if $a \mid b$ and $b \mid c$, then $a \mid c$.

Theorem 1.5. For a natural number n, congruence modulo n is reflexive, symmetric, and transitive

Theorem 1.6. For integer a, b, c, d and a natural number n, if $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a + c \equiv b + d \mod n$.

Theorem 1.7. For integer a,b,c,d and a natural number n, if $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a-c \equiv b-d \mod n$.

Theorem 1.8. For integer a, b and natural numbers n, m if $a \equiv b \mod n$ and then $ma \equiv mb \mod mn$.

Theorem 1.9. For integer a, b, c, d and a natural number n, if $a \equiv b \mod n$ and $c \equiv d \mod n$, then $ac \equiv bd \mod n$.

Theorem 1.10. For integer a, b and a natural number $n, a \equiv b \mod n$ if and only if a and b have the same remainder when divided by n.

Theorem 1.11. For integers a, b, n, r and k, if $a \equiv nb + r$, $k \mid a$ and $k \mid b$, then $k \mid r$.

Theorem 1.12. For integers a, b, n and r, if a = nb + r then gcd(a, b) = gcd(b, r).

Theorem 1.13. For integers a, b and d, the diophantine equation ax + by = d has a solution (with x and y integers) if and only if $gcd(a, b) \mid d$.

Corollary For integers a and b, the diophantine equation ax + by = 1 has a solution (with x and y integers) if and only if gcd(a, b) = 1.

Theorem 1.14. For integers a and b, if x' and y' are integral solutions to the diophantine equation ax + by = d, then all solutions are given by

$$x = x' + \frac{b}{\gcd(a,b)}t \qquad y = y' - \frac{a}{\gcd(a,b)}t$$

where t is an integer.

Theorem 1.15. For integers a, b, c and a natural number n, if $ac \equiv bc \mod n$ and gcd(c, n) = 1, then $a \equiv b \mod n$.

2 Theorems About Primes

Theorem 2.1. A natural number n is prime if and only if for all $p < \sqrt{n}$, p does not divide n.

Fundamental Theorem of Arithmetic Every natural number greater than 1 is either a prime number or it can be expressed uniquely as a product of primes.

Theorem 2.2. For natural numbers a and b, if $a^2 | b^2$ then a | b.

Theorem 2.3. For natural numbers a, b and n, if $a \mid n, b \mid n$ and gcd(a, b) = 1 then $ab \mid n$.

Theorem 2.4. For p pries and integers a and b, if $p \mid ab$ then $p \mid a$ or $p \mid b$.

Lemma For any $n \in \mathbb{N}$, gcd(n, n+1) = 1.

Theorem 2.5. There are infinitely many primes.

3 Theorems About Modularity

Theorem 3.1. For a polynomial $f(x) = a_k x^k + a_{k-1} x^{k-1} + \ldots + a_1 x + a_0$, if $a \equiv b \mod n$ then $f(a) \equiv f(b) \mod n$.

Theorem 3.2. For an integer a and natural number n, there is a unique integer t in $\{0, 1, ..., n-1\}$ such that $a \equiv t \mod n$.

Theorem 3.3. For integers a, b, n with n > 0, $ax \equiv b \mod n$ has a solution if and only if there exist integers x and y such that ax + ny = b.

Theorem 3.4. For integers a, b, n with n > 0, $ax \equiv b \mod n$ has a solution if and only if $gcd(a, n) \mid b$.

Theorem 3.5. For integers a, b, n with n > 0, if x' is a solution to $ax \equiv b \mod n$, then all solutions are given by

$$x' + \frac{n}{\gcd(a,n)}m \mod n$$

where m = 0, 1, ..., gcd(a, n) - 1.

Chinese Remainder Theorem Let $n_1, n_2, ..., n_r$ be positive integers such that $(n_i, n_j) = 1$ for $i \neq j$. Then the system of congruences

$$x \equiv a_1 \mod n_1$$
$$x \equiv a_2 \mod n_2$$
$$\vdots$$
$$x \equiv a_r \mod n_r$$

has a simultaneous solution, which is unique modulo the integer $N = n_1 \cdot n_2 \cdot \ldots \cdot n_r$.

4 Higher Degree Congruences

Theorem 4.1. For natural numbers a and n there exists natural numbers i and j with $i \neq j$ such that $a^i \equiv a^j \mod n$.

Theorem 4.2. For natural numbers a and n if gcd(a, n) = 1 then there exists a natural number k such that $a^k \equiv 1 \mod n$.

Theorem 4.3. For natural numbers a and n, with gcd(a, n) = 1 and $ord_n(a) = k$, then $a^m \equiv 1 \mod n$ if and only if $k \mid m$.

Theorem 4.4. For a prime p and natural number m, $\Phi(p^m) = p^m - p^{m-1}$.

Fermat's Little Theorem For p prime, and gcd(a, p) = 1, $a^{p-1} \equiv 1 \mod p$.

Euler's Theorem For integers a and n, with n > 0 and gcd(a, n) = 1, $a^{\Phi}(n) \equiv 1 \mod n$.

Wilson's Theorem For a natural number $n, (n-1)! \equiv -1 \mod n$ if and only if n is prime.

5 Cryptography

Theorem 5.1. If p and q are primes and W is a natural number less than p, q then $W^{(p-1)(q-1)} \equiv 1 \mod pq$.

Theorem 5.2. If p and q are primes and W is a natural number less than p, q then $W^{1+(p-1)(q-1)} \equiv W \mod pq$.

Theorem 5.3. If p and q are primes and E is a natural number relatively prime to (p-1)(q-1), then there exist natural numbers D and y such that ED = 1 + y(p-1)(q-1).

Theorem 5.4. If p and q are primes and W is a natural number less than p, q and ED = 1+y(p-1)(q-1) then $W^{ED} \equiv W \mod pq$.

6 Primitive roots and high order congruences

Theorem 6.1. Suppose p is prime, $ord_p(a) = d$ and gcd(i, d) = 1, then $ord_p(a^i) = d$.

Lagrange's Theorem If p is prime and f(x) is a degree n polynomial then $f(x) \equiv 1 \mod p$ has at most n incongruent solutions modulo p.

Theorem 6.2. For a prime p and a natural number n, there are at most $\Phi(d)$ many incongruent integers modulo p that have order d modulo p.

Theorem 6.3. For a prime p and a primitive root g, the set $\{0, g, ..., g^{p-1}\}$ is a complete residue system modulo p.

Theorem 6.4. For any natural number n, $\sum \Phi(d) = n$ where the sum is take over the divisors d of n.

Theorem 6.5. Every prime p has a primitive root.

Theorem 6.6. For natural numbers k, b and an integer n, with $gcd(k, \Phi(n)) = 1$ and gcd(b, n) = 1, then the congruence

$$x^k \equiv b \mod n$$

has a unique solution modulo n given by

 $x \equiv b^u \mod n$

where u is a solution to the diophantine equation $ku + \Phi(n)v = 1$.